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summ 

The postbuckling and maximum strength analyses of uniformly shortened, 

simply supported rectangular plates with straight,  unloaded edges are per- 

foraed by using Reissner'e variational principle in conjunction with a 
deformation theory of plasticity.    The results are compared to (l) ex- 

perimental data for a rectangular plate in which the test conditions 

basically reflect the boundary conditions specified in the present 

analyses, and (2) a potential energy solution that correlates well with 

experiment, but in which the effect of waveform change on the average 

stress carried by the plate is accounted for only in a gross manner and 

in which the effect of small, local unloading is neglected.    Good agree- 

ment with experiment establishes confidence in the new approach and in- 

dicates that the simplified technique utilized in the potential energy 

solution to compensate for waveform changes may be employed for engineer- 

ing purposes.    Both analytical approaches predict a slightly conservative 

plate maximum strength relative to the experimental result.    This dis- 

crepancy is attributed to slight departures of the test conditions from 

the ideal boundary and loading conditions assumed In the analyses. 

An application of Reissner's principle and a modified version of the 

principle is undertaken initially to obtain the elastic postbuckling 

behavior of unlaxially compressed square and rectangular plates.    Excel- 

lent agreement of elastic-solution results with essentially "exact" 

solutions of other authors for the same boundary conditions establishes 

the effectiveness of the Reissner and modified Reissner principles and 

Justifies the application of the Relssner-princlple approach to the 

maximum strength problem. 

111 



TABLE OF CONTENTS 

Page 

SUMMARY 111 

LIST OF ILLUSTRATIONS v i 

LIST OF TABLES V 1 1 

LIST OF SYMBOLS . Vlll 

INTRODUCTION 1 

THEORY 5 

Statement of Probl-^ and Basic Assumptions 5 
Variational Principle ^ 

Specialization for Elastic Behavior, Unmodified Version . . . 9 
Specialization for Elastic Behavior, Modified Version . . . . 11 

METHOD OF SOLUTION 13 

Elastic Problem, Modified Reissner Functional (Solutions A) . . 15 
Elastic Problem, Unmodified Reissner Functional (Solutions B) . 17 
Inelastic Problem, Unmodified Reissner Functional 18 

RESULTS AND DISCUSSION 2 2 

Elastic Solutions 2 2 

Inelastic Solutions 23 

CONCLUDING REMARKS 2° 

LITERATURE CITED 

APPENDIXES 

I. Euler Equations and Boundary Conditions Derived From the 
Vanishing of the First Variation of the Reissner Func-
tional for a Two-Element Plate With Prescribed End 
Shortening 4 • 

II. Modified Reissner Functional for Elastic Problem 55 

III. Unmodified Reissner Functional for Elastic Problem 59 

IV. Newton-Raphson Iterative Technique 62 

DISTRIBUTION ^ 

V 



LIST OF ILLUSTRATIONS 

Figure ISS1 
1 Plate Jeometry and Coordinate System 29 

2 S t r e s s -S t r a in Curve fo r Aluminum 2021+-T3 Assumed in 
Present Inelastic Analyses 30 

3 Load-Shortening Curves for Square Pla tes Based on 
E las t i c Solutions 31 

k Load-Shortening Curves fo r Rectangular Plates Based on 
E la s t i c Solutions (b/X = 1.25) . . . . . 32 

5 Load-Shortening Curves f o r Rectangular Pla tes Based on 
E la s t i c Solutions (b/X = 1 . 3 3 ) 33 

6 Load-Shortening Curves fo r Rectangular Pla tes Based on 
E l a s t i c Solutions (b/X = 1 . 5 ) ^ 

7 Load-Shortening Curves f o r Rectangular Pla tes Based on 
E la s t i c Solutions (b/X = 2 . 0 ) 35 

8 Comparison of Load-Shortening Curves f o r a Rectangular 
Pla te Based on Predict ion of Present Theory, Analysis 
of Reference 2, and Experimental Results of Reference 3 • 36 

9 Theore t ica l and Empirical Maximum Strength C r i t e r i a fo r 
Simply Supported Rectangular Pla tes 37 

v i 



LIST OF TABLES 

Table Page 

I        Normalized Stress and Displacement Coefficients for 
Square Plates,   Solution Al          38 

II        Normalized Stress and Displacement Coefficients for 
Square and Rectangular Plates,   Solutions A2            39 

III        Normalized Stress and Displacement Coefficients for 
Rectangular Plates,   Solutions A2       kO 

IV        Normalized Stress and Displacement Coefficients for 
Rectangular Plates,  Solutions B (ß = 1.25 and 1.33)     ...      hi 

V        Normalized Stress and Displacement Coefficients for 
Rectangular Plates,  Solutions B (ß =1.5 and 2,0)     ....      k2 

VI        Normalized Stress and Displacement Coefficients for 
a Rectangular Plate (ß = 1.2 ,   jth/b = 2.5U5 x 10-2)   ; 
Inelastic Results Based on Aluminum 202h-T3 Plate 
Material       1+3 

VII        Normalized Stress and Displacement Coefficients for 
a Rectangular Plate (ß = 1.1+ ,   ith/b = 2.5i+5 x 10-2)   ; 
Inelastic Results Based on Aluminum 2Q21+-T3 Plate 
Material       kh 

VIII        Normalized Stress and Displacement Coefficients for 
a Rectangular Plate  (ß = 1.6 ,   nh/b = 2.5I+5 x 10-2)   ; 
Inelastic Results Based on Aluminum 2021+-T3 Plate 
Material       1+5 

vi 1 



1ST OF SYMBOLS 

A.,B.,C in-c lane s t r e s s parameters 
1 1 

A. ,,B. . ,C. . bending s t r e s s parameters 
i j 

a. . .b . . . c . . in-plane s t r e s s parameters 
i j 10 i j 

cr 

K 

p la te dimension in y -d i r ec t i on , in . 

Et3 

D flexural rigidity of solid plate = — , lb-in. 
12(l-u ) 

2Eh2tf x 
D flexural rigidity of two-element plate = , (t-i = g) > 

l b - i n . 3 

E Young's modulus f o r p l a t e mate r ia l , psi 

E secant modulus, ps i s ' r 

e unit shortening applied to plate, in./in. 

e buckling strain or shortening, in./in. 

°eff 

complementary energy density = / £
effdo~eff > Ps^ 

displacement parameter 

overa l l thickness of two-element p l a t e measured between 
center l i n e s of f aces , in . 

i . j , m , n in t ege r s 

mater ia l constant appearing in Equation (7) 

K . ..K, - numerical constants 1 U5 
L plate dimension in x-direction, in. 

M .M bending moment per unit length, lb x' y 
M twis t ing moment per uni t length, lb xy 
m number of buckles in x -d i rec t ion 

n materia], constant appearing in Equation (7) 

t th ickness of so l id p l a t e , in . 

t th ickness of one face of two-element p l a t e , in . 

V I 1 1 



• 

u" 

u.v.w 

W. . 
ij 

V 

x,y.z 

a 

0 

•> 
xy 

xy 

7 xy 

eeff 

e   ,e x    y 

x'  y 

e     .e 
x     y 

1 

x 

E 

av 

cr 

cy 

eff 

Reissner functionaJ .  Ib-in. 

die placement of point in middle surface   ■:' plate in 
x-   .  y-  .   and z-directions.   respectively,   in. 

nondimensionalized displacement parameters 

volume of plate,   in. 

plate coordinates  (see Figure 1,.   in. 

bending stress parameter = A.Jj^.  - 'hyj'-i^   = C-io/C^, 

buckle aspect ratio = b/X 

total shear strain in xy-plane.  in./in. 

shearing strain at middle surface,  in./in. 

shearing strain due to twisting,  in./in. 

effective strain = 
v/? 

r^ 2    1 
2 

c 
X 

+ 2 
ey 

+ G  e 
x y 

+ -^    .   in./ m. 

total components of strain in x- and y-directions. 
respectively,   in./in. 

components of strain at middle surface in x-  and y- 
directions.   respectively,   in./in. 

components of strain due to bending in x- and y- 
directions.   respectively,   in./in. 

nondimensional lateral coordinate.  2y/b 

buckle half wavelength in x-dire?ticn.   in. 

Poisson's ratio for plate material 

nondimensional axial coordinate.  2x/X 

average compressive stress,   psi 

compressive buckling stress,  psi 

compressive yield stress of material,   psi 

V2        2 2^ 
x        y        x y      -^ xy      F 

IX 



■ 

er maxinitan average compressive stress,  psi 

tr .er components of stress in x- and y-directions, 
respectively,  psi 

c'.cr' local average stress in x- and y-directions, 
respectively,  psi 

/ ' * 
er    .er bending stress in x- and y-directions,  respectively,  psi 

x     y 

T total shear stress in xy-plane,  psi 

T' local average shear stress,  psi 

x" shear stress due to twisting,   psi 
xy 



INTRCDUCTION 

The analytical deo^rmination of postbuckled plate behavior in the plastic 

range has been investigated by Mayers and Budiansky for square plates 

in Reference 1 and by Mayers, Nelson, and Smith for rectangular plates 

in Reference 2.    The latter study serves to explain the absence of a 

plate maximum strength in the case of the square-plate analysis of 

Reference 1 and correlates well with the experimental data presented 

by Stein in Reference 3.    In Reference h, Stein discusses the phenomenon 

of buckle wavelength change in elastic structures;  in Reference 3, a 

purely theoretical elastic analysis implies that, unlike square plates, 

postbuckled rectangular plates can change buckle aspect ratio at reason- 

able values of end shortening.    The experimental evidence presented in 

Reference 3 proves the phenomenon to be quite true;  in addition,  the 

experimental data reflect a maximum load which cannot be predicted by 

the accompanying elastic analysis. 

Although the analysis of Reference 2 correlates well with the plate 

maximum strength data of Reference 3, the method for obtaining the 

final load-shortening curves leaves a question unanswered.    This ques- 

tion concerns the validity of the approximate technique of accounting 

for an accurate postbuckled waveform of the plate by adjusting the 

first-approximation load-shortening curve at a given shortening in the 

plastic range by the ratio, at the same shortening value, of the "exact" 

elastic load-shortening curve to the first-approximation elacLlc load- 

shortening curve.   By first-approximation load-shortening curve is meant 

that curve obtained under the assumption that the waveform at initial 

buckling persists through the postbuckllng range to plate failure.    This 

technique provides good correlation of the theoretical prediction of 

Reference 2 for the maximum strength and number of buckles at failure 

and experimental results of Reference 3.   This procedure is highly 

desirable for engineering purposes, as the complexity of the analysis 

is reduced considerably; for problems in which an accurate elastic 

analysis exists, a rapid means is provided, therefore, for evaluating 

the maximum strength of plate elements.    Essentially "exact" elastic 



solutions to  the problem of a compressed, simply supported flat plate 

with straight,  unloaded edges are given by Stein in Reference 3 (square 

and rectangular plates) and by Levy in Reference 5 (square plates). 

One way in which to justify the use of the load-shortening curve adjust- 

ment proct-dure,  on other than an experimental correlation basis, is to 

extend the potential energy solution of Reference 2 by utilizing suf- 

ficient terms  in the functions describing the displacements    u , v , 

and   w    such that the essentially exact elastic solution can be obtained 

and extended into the inelastic region.    This procedure would not require 

that any adjustment be made to the inelastic solution,  since the wave- 

form beyond initial buckling would be adequately described. 

An alternate method is available, however, that reduces the complexity 

of the problem considerably.    This method is based on the variational 

principle of Reissner given in Reference 6.    Stated briefly, the prin- 

ciple is based on the simultaneous vanishing of the first variation of 

the Reissner functional with respect to admissible states of stress and 

strain.    The variation yields Euler equations corresponding to (l) 

stress-displacement relations and (2) equilibrium conditions, and the 

associated boundary conditions.    Appendix I contains the variation of 

the Reissner functional for a two-element plate with a core, rigid in 

shear, separating the faces.    This configuration, employed in References 

1 and 2 to eliminate the added complexity of plasticity effects through 

the plate thickness,  is utilized again herein for comparison purposes. 

Three basic advantages of employing Reissner's principle rather than the 

more conventional minimum potential energy theorem for the solution of 

the  inelastic  plate  problem are: 

1. In the former,  stresses and displacements are assumed as com- 

pletely independent quantities in a Rayleigh-Ritz solution, 

while  in the latter, displacements must be determined to great 

accuracy in order to obtain satisfactory stresses through the 

particular constitutive relations being used. 

2. A first approximation to the inelastic stress distribution can 

be obtained from an accurate elastic analysis;  thus, the 



displacement distributions are no longer required to high 

accuracy.    The fact that the stress-displacement relations 

given by the variation of the Reissner functional are satisfied 

only approximately, and, perhaps, unsatisfactorily, by a 

Rayleigh-Ritz solution is of little consequence.    This is due 

to the proper, independent selection of stresses and displace- 

ments which,  in turn, eliminates the need to evaluate stresses 

in terms of Inaccurate displacement derivatives through the 

constitutive relations.    With equilibrium and compatibility of 

deformations satisfied in either case (potential energy method 

or Reissner's principle), it would appear that an unacceptable 

stress distribution with the constitutive relations satisfied 

is much less desirable than reasonably correct displacement and 

stress distributions with the constitutive law not satisfied 

exactly.   This conjecture is strengthened even more when it is 

considered that the constitutive law assumed to hold even in 

elastic, homogeneous,  Isotropie plate theory is only a good 

approximation for a conventional material.    For either non- 

linear elastic or inelastic considerations,  the desirability 

of seeking exact satisfaction of an idealized constitutive law 

should be subservient to insuring that displacement compati- 

bility and equilibrium are satisfied. 

3-    The effects of nonlinear stress-strain relations are readily 

incorporated into the Reissner functional by introducing the 

Ramberg-Osgood representation of the material stress-strain 

curve  (Reference 7)«    With reference to the remarks in item 

2,  it should be noted that the uniaxial stress-strain carve 

is an accurate representation in general only up to the region 

of the 0.2% offset yield stress. 

Strangely enough, Reissner's principle has not been widely utilized to 

date.    One application of the theorem is found in Reference 8, in which 

Sanders, McComb, and Schlechte extend the principle to consider creep 

behavior with specific applications to plates and columns.    In Reference 

9, Mayers and Rehfield apply a modified version of the principle to study 



the postbuckllng behavior of axially compressed circular cylindrical 

shells.    The modification of the principle consists of coupling the 

bending stresses or their resulting moments to the curvature through 

Hooke's law, thus leaving only the in-plane stresses, in-plane dis- 

placements, and lateral displacements as varlationally independent 

quantities. 

The present analysis also employs the modified principle for the elastic 

postbuckled plate problem, while comparing solutions based upon two- and 

three-term lateral displacement functions to the essentially "exact" 

square-plate solutions of Levy and Stein.    Both the modified and the 

unmodified Reissner functionals are employed with solutions compared to 

those of Stein for rectangular plates with aspect ratios 1.33, 1.5, and 

2.0 .    In all cases, there is little difference obtained in the quanti- 

tative results representing the load-shortening relationships. 

With confidence established in the present method of solution, the in- 

elastic postbuckling solution is obtained for a rectangular plate of 

aspect ratio 5:1 .    Comparison is made to the solution of Reference 2 

and the experimental data of Reference 3«    Good agreement is obtained, 

with the results Indicating that the load-shortening curve adjustment 

procedure employed in Reference 2 is fully Justified for predicting 

plate maximum strength in the respective analyses of References 1 and 2. 



THECRY 

STATEMENT CF PROBIEM AMD BASIC ASSUMPTIONS 

The protlem considered herein is that of the elastic and inelastic post- 

buckling behavior of uniformly shortened, simply supported square and 

rectangular plates that buckle initially in the elastic range and that 

have straight, unloaded edges free to translate in the plane of the 

plate.   As observed in Reference 2, major factors in approximating 

satisfactorily the postbuckling behavior and, ultimately, the maximum 

strength of uniformly compressed, simply supported rectangular plates 

with straight, unloaded edges are the combined effects of (l) changes 

in waveform beyond initial buckling,   (2) changes in buckle aspect ratio 

beyond initial buckling, and (3) plasticity.    The emphasis is placed on 

determining the maximum strength of rectangular plates without utilizing 

the load-shortening curve adjustment procedure of References 1 and 2. 

The adjustment procedure,  in gross fashion, accounts for change in buckle 

waveform as postbuckling proceeds.   A new solution of the maximum strength 

problem is obtained by employing Reissner's variational theorem; the re- 

sults of the present investigation and that of Reference 2 are compared, 

and the accuracy of the load-shortening curve adjustment procedure is 

evaluated.    To establish confidence in the inelastic analysis based upon 

the Reissner principle, elastic solutions for the postbuckling problem 

are undertaken and compared with essentially "exact" solutions presented 

in References 3 and 5« 

The inclusion of plasticity effects in conjunction with analysis based 

upon the small strain, moderate rotations strain-displacement relations 

of the von Karman plate theory results in a problem that is nonlinear In 

two respects.    The two-element plate description (see Figure 1),  introduced 

in References 1 and 2 to avoid complexity associated with accounting for 

plasticity effects through the plate thickness, is employed herein to 

provide a direct comparison of the results of the present analyses with 

those of Reference 2.    The core separating the faces of the plate is 

considered to be rigid in shear in the present investigation, but it 

provides a means to extend the current analyses to include transverse 



shear deformations when the postbuckling behavior of sandwich plates is 

of interest.    Again,  plastic behavior is based upon deformation theory, 

and the ramifications of local unloading are assessed in retrospect. 

Material compressibility is neglected; thus, Poisson's ratio is taken 

as l/2 throughout the present development. 

VARIATIONAL PRINCIPIE 

In essence, Reissner's principle states that the vanishing of the first 

variation of the Reissner functional with respect to admissible states 

of stress and strain establishes the stress-displacement relations, the 

equilibrium equations and the associated boundary conditions. 

The general functional is formulated first for the inelastic problem; 

specializations are made subsequently for purely elastic considerations 

in both an unmodified and a modified version of the functional.    The 

functional modification corresponds to the one introduced in Reference 9 

to couple the bending stresses to the assumed deflections and to leave 

only the membrane stresses to be determined from the variational process. 

The functional for plate-type considerations with edge displacements 

specified is given as 

U"   =    /    la e   + a e   + T    7      - F' | dV (l) J     I x^x        y'V       xy'xy ( v  / 

V 

where   F '    is the complementary energy density.    If the end loading were 

to be prescribed rather than the end shortening, then the Reissner func- 

tional would include another functional term corresponding to the poten- 

tial of the prescribed edge loads, as in the potential energy principle. 

The vanishing of the first variation of the functional expressed in 

Equation  (l) is performed in Appendix I for the two-element plate con- 

sidered herein.    The variation establishes Euler equations  corresponding 

to  (l) in-plane and out-of-plane equilibrium given in Equations  (35) and 

(36),  respectively, and (2) stress-displacement and moment-cvirvature 

relations given in Equations  (3!+a) and O^b); respectively.    Stress 

boundary conditions for the uniformly compressed, simply supported plate 



with straight, unloaded edges resulting from the variation are given in 

Equation (37 ). 

It is convenient to obtain the functional of Equation (1) in terms of 

stresses and strains such that the nonlinear portion of the functional 

due to plasticity is separable from the elastic portion.    To this end, 

the complementary energy density   F'    is first written incrementally as 

dF =    e da   + e da   +7   dx 
TC   x        y    y      'xy xy (2) 

Next, the effective stress and strain quantities 

6eff 

2       / ~P 
/^ V x    y    x y    k 

(3) 

and 

eff 
2        2 2 a   +a    -aa   +3T x       y       x y     ' xy 

1 
(^) 

which are related by 

eff 

■eff 

=    E (5) 

are Introduced.    It can be shown readily that 

€effdaeff dF' 

by utilizing the secant modulus theory stress-strain relations for an 

incompressible material of either Reference 1 or Reference 2.    The 

Reissner functional may be written then as 

r- -/ ae+ae+T    y xx        y y       xy'xy 

0 

/ 

eff 
eeffd0eff dV (6) 



Equation'(6) can be simplified further by employing the Ramberg-Osgood 

three-parameter representation of the uniaxial stress-strain curve 

originally developed for aluminum alloy, stainless steel, and carbon- 

sheet steel in Reference 7 and given by 

€eff = !^+K(ki)n (7) 
E \ E    / 

where   E , K , and    n   are constants determined for each material under 

consideration.    The stress-strain curve (see Figure 2) for aluminum 

202U-T3 used in the present inelastic analysis is described by 

K = 3.1^ x lO17 , n = 8.60 , and   E = 10.? x 10    psi    .    Substitution 

of Equation (7) into Equation (6) and subsequent integration yields 

(8) V"   -    Mae   +ae   +T   ,     . f!^ + ^ f ^f ^  dv J    1 xx       yy       xy7xy     [ ^       «^ B    /     J| 

Upon integration over the plate thickness, the volume integral of 

Equation (8) for the two-element plate becomes, with   V = 2tfLb    , 

\ E /   Xy     2 [2 \ E    /       m-l \ E    /     J. 

. ifi^f.JL/ittr1]!^ (9) 
2 L2 \ E    /       nf 1 \ E    /     Jb I 

where the nondimensional coordinates    I = 2x/X   and    ^ = 2y/b   are 

introduced, and the total stresses and strains are written in terms of 

in-plane and bending contributions as denoted by the primed and double- 

primed quantities, respectively.   The subscript    t    refers to the top 

face, and the subscript    b    refers to the bottom face.    Finally, through 

8 



the utilization of the strain-displacement relations of von Karman plate 

theory, modified for the two-element plate as indicated in Appendix I, 

Equation (27), the Reissner functional given in Equation (9) becomes 

1    1 u 

EV /  = J J JIE /hx + 2 W'xJ  VE /1>+ 2 W'yJ 

f/jEz\rv +u  +w w l + f!L\r-w  ] + (JL.]\IV  1 ^  E   /[ ,x       ,y        ,X ,yj     \Ey/[2,xxJ     \E/l2,yyi 

f ( E /Lh ^^J " k [\~)t + \~k J 

2(n+l) [(H^^n - 
Specialization for Elastic Behavior, Unmodified Version 

The Reissner functional given in Equation (l) is specialized for the 

elastic postbuckllng problems simply by setting K equal to 0 . The 

effective stress, in general. 

2      2   2 2 
0"--  =  (T  +0"  -(T(T  +3T (11) eff    x   y  x y  -^ xy K    ' 

may be written for the two-element plate as 

(o-2„) =    (o-' ± cr")2 + (o-' ± cr")2 -  (a' ± (r")(a' ± cr") v  eff'    . v x       x ' v y       y ' v x       x M y       y ; 

+    3 (T'    ± T")
2 (12) v xy      xy/ y    ' 



It  is easily verified that 

1 r/0eff^      /a«^\21 lI>J\2      /0.A2      ,o.\ ,<i_\ /T.r.vS 

4 LV E ):m\-m)<t)-m-<-fi 

©•ftMS(t)-(fJ] 
(13^ 

Thus, Equation (10), with    K   equal to    0    ,  can be written 

1 1. 

EV 
0 0 E   /hX+2W'XJ + iE   /LV'y+ 2 Vl 

\ E /L 'x    »y    >x »yj   \ E /L2 ^J  v E /L2 ^J 

lr/ö'\2     /a\2     /a'\/a'\        /T'  v2 

^(f)hj-He)%(?)-(?)(?)-ffj 
+ (t)+(t)-(t)(tKfnh 

The formulation of the Reissner functional given in Equation (l^) per- 

mits an independent selection of the stress and displacement quantities 

that satisfy at least the prescribed displacement boundary conditions im- 

plied in Appendix I for application of the Rayleigh-Ritz procedure.    However, 

since the stress distributions are selected independently in the Reissner 

formulation,  the stress boundary conditions may be satisfied as well. 

The requirement that the functional be stationary with respect to the 

free parameters which describe the assumed states of stress and displace- 

ment then approximately satisfies the equilibrium conditions [Equations 

10 



(35) and (36)] and the streBS-displacement and moment-curvature rela- 

tions [Equation (3^)]. 

Specialisation for Elastic Behavior, Modified Version 

The formulation given in Equation (Ik) is modified by enforcing, at the 

outset, the moment-jurvature relations given in Equation (3^b), which 

results in the expressions 

x 

E 

£ 

2h 

3 

1        1 W +   — V f ^xx     2    ,yyj 

E 

2hr    "i —   w       + - w 
3   L *yy   2   ,xxj 

T" h r        1 

E      2 L 'xyJ 

)        (15) 

Utilization of the relations given in Equation (15) permits the out-of- 

plane equilibrium Equation (36) to be written 

D Vw - 2t-(a'w       + a'w       + 2T ' w      )    =    0 
E fv x ,xx       y ,yy xy )xy/ 

Equation (16) is analogous to the familiär fourth-order out-of-plane 

equilibrium equation for tolid plates under the action of in-plane 

forces given by 

(16) 

DVw - t(a w       +aw       +2TW      )   =    0 v x ,xx        y ,yy xy »xy7 (17) 

Substitution of the expressions given by Equation (15) into Equation (Ih) 
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yields the modified version of the functional 

U" 

EV 

1 1, 

0 0 E  /L  'X      2    'Xi    \E   ll  '*      2    'yJ 

\ E /[V'x+ U'y +Vw>yJ"2 L\E / +
\E /    \E AE / 

/Txvfl      h    [2 2 2 
3 —*• 1+ —   w       +w       +w     w       +w 

V E / J   6 L ^^    »yy    i** >yy     >xy 
dfidrj (18) 

in which only the quantities    a    , a    , T      , u , v , and   w   are now 
x   y   xy 

variationally independent. 
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METHCD CF SOLICTION 

The most efficient application of Reissner's variational principle to 

obtain solutions of the inelastic postbuckled plate problem utilizing 

a direct  (Rayleigh-Ritz) approach requires prior knowledge of the elas- 

tic stress and displacement distributions.    The fact that the plates 

considered herein buckle elastically suggests, with a high degree of 

confidence, the use of stress and displacement distributions from 

existing essentially "exact" elastic plate solutions as guides in 

selecting the assumed distributions for postbuckling into the inelas- 

tic range. 

In general, based on the quite accurate elastic stress distributions 

depicted in Reference 5> the in-plane stress system is seen to be 

suitably described by expressions of the form 

f-ll vv 
even 

Mlvv E 

jcjr 

even 

E 11^ 
odd 

(19) 

For the functional given in Equation (1*0; the bending stresses    a" , 

a" , and   T"   are, of course, expressible in a similar manner.    Hbw- y xy 
ever,  it is found that best results for both accuracy and simplicity 

are obtained in the present problem by selecting the bending stresses 

in the form of curvatures, as stipulated by Equation (15), but with 

perfectly free amplitude coefficients.    The modified functional given 

in Equation (18) for elastic behavior requires no specification of the 

bending stresses, since the moment-curvature relations are enforced at 

the outset through Hooke's law. 
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The displacements satisfying all geometric boundary conditions (see 

Appendix I)  are suitably expressed by series of the form 

u 
b = -e (f)+II%^~~-¥ (**) 

even 

E  -   ^IIV-T^T* (^ 
even 

mitx nity /_. N W_„   COS  -^—  COS  -rf- (20c) 
W 

odd 

where    e    is the applied unit shortening. 

The coefficients    f » V ' V ' V '  ^j   ' bij '  and   cij    are de" 
termined from the condition that    5U" = 0   with respect to these co- 

efficients.    The number of free variables,  indicated by Equations (19) 

and (20'1 , to suitably describe the stresses and displacements may seem 

excessive at first glance; however,  as observed in Reference 9, the in- 

plane stress distribution can be selected such that one or both of the 

in-plane equilibrium equations are satisfied independently of the magni- 

tude of the free stress coefficients.    If the y-direction in-plane equilib- 

rium equation (35b)  is satisfied independently of the stress-coefficient 

magnitudes, then the v-displacement cannot be specified arbitrarily.    This 

is a consequence of the fact that the satisfaction of the y-direction in- 

plane equilibrium equation, which is performed at the outset,  does not 

permit the variation    5 U" = 0   to be made.    Similarly, the u-displacement 

cannot be specified in terms of unknown amplitudes if the x-direction in- 

plane equilibrium Equation (35a)  is satisfied independently of the stress- 

coefficient magnitudes.    The procedure, wherein one or both of the in- 

plane equilibriums are satisfied independently of the stress coefficients, 

has merit in problems where a stress-function approach is not feasible. 

Such is the case,   for example,  in Reference 9, where a highly nonlinear 

Hi 



elastic shell theory is employed,  and in the present problem, where 

inelastic behavior is present. 

EIASTIC FROBIEM. MODIFIED REISSNER FUNCTIOKAL (SOLUTIONS A) 

The in-plane stress distribution of the form given in Equation (19) is 

assumed initially, for the present analysis, as 

x 2 h 2 2 2 k k 2 k k 
r "   aoo + V + W + ^a1 * + ^ T + %2l *  + aWl 1 

,2 k t2 6 

E 

f '   boo + V  + ^^o1  + V + W + b
2^ "  + b268 ^       )(21) 

E 

Due to the large number of stress coefficients, it is convenient at this 

point to invoke the stress conditions at the plate edges implicit in 

Equation (33) and thereby reduce the number of free variables consid- 

erably.    The satisfaction of the stress boundary conditions is not 

actually necessary, since the surface stresses are not specified for 

the present problem.    This procedure eliminates 8 stress coefficients 

and reduces the number of free coefficients to 10 .    In view of the 

discussion in the previous section, a further reduction in the number 

of free stress coefficients can be made by taking the assumed    u-   and 

v-dlsplacement functions to be independent of free parameters; thus, it 

is possible for the in-plane equilibrium Equation (35) to be satisfied 

identically.   With the end shortening specified, a u-displacement func- 

tion which satisfies the geometric boundary conditions and which contains 

no free parameters is 

u 
b (I) 

!■) 



Immediately, Equation (35a) can be satisfied Identically by relating 

T the coefficients of    o     and x xy 

Now,  If the constant v-dlsplacement at the unloaded edges were to be 

specified with regard to magnitude,  then the function 

I- f 
{D 

would satisfy the geometric boundary conditions at    y = ± b/2    and would 

permit the coefficients of    a'    and    T'      to be related such that Equa- y xy 
tion (35b) could be satisfied identically.    However, although the v- 

displacement is constant on the unloaded edges, its magnitude    f    is 

actually unspecified for the present problem.    Indeed, the magnitude of 

f    should be established in the variational process, with Equation (35b) 

being satisfied only approximately.    Nevertheless, in view of the small 

Influence of    f    reflected in the solutions presented in References 1 

and 2, it is found that the specification of    f = 0   and the identical 

satisfaction of Equation (35b), in addition to the identical satisfac- 

tion of Equation (35a), lead to accurate results.    Thus, Equation (21) 

can be reduced to the expressions containing only six free variables 

given by 

.4 

^   »    A. + A9n   + A ^MO^-r) 
o' 
JL 
E 

E 

^SW'SHHXr-r) >    (22) 

--ßc(5 - i3) (T,3- n
5) 

where new symbols for the stress coefficients are Introduced for 

simplicity. 
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There are no restrictions on the out-of-plane displacement   w   other 

than those associated with the geometric boundary conditions.   As a re- 

sult, the assumed function for   w   that satisfies the geometric boundary 

conditions and that provides sufficient freedom to change the waveform 

as postbuckling progresses is obtained by retaining only the   w .   , \T~.   , 

and   w..-    terms of the out-of-plane displacement series given in Equation 

(20c).   The actual displacement distributions, with both in-plane equi- 

librium and stress boundary conditions satisfied, are assumed throughout 

the present analyses to be 

-•(I) u 
b 

I'   ° 
?   =   v„ cos £ coe Ä + w     „„a 3« C08 «jr « co6 3*£ 
bllAbjlAblJA b 

)(23) 

The modified Reissner functional given in Equation (18), employing the 

expressions given in Equations   (22)   and (23),  is expanded to yield 

Equation (39) of Appendix II.   The solution obtained by utilization of 

the functional given in Equation (39) with    (ith/b) w.« ■ w!.- ■ 0    is 

designated as Solution Al, while the solutions obtained with   w_    re- 

tained are designated as Solutions A2 . 

EIASTIC ffiOBIEM, UHMCDIF3ED REISSNER FUNCTIONAL (SOLUTIONS B) 

Instead of relating the bending stresses to the curvatures through 

Hooke's law, as Is the case in Solutions A, the bending stresses for 

the unmodified functional expressed by Equation (lU) are selected in- 

dependently.    With the utilization of the three out-of-plane displace- 

ment terms given In Equation (23), the bending stress distributions, in 

the form of the curvatures as specified by Equation (15), satisfying 
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. 

the boundary conditions [Equation (3?)], are 

2jty\ x 

E 

a 
JL. 

E 

(Jty                        2jty \ «x 
A...   cos —+ A-io cos   )   cos — 

b          1:i            b   / X 

3flx 
+ A-1   cos 

«y 
cos 

-( 

Jty 

b 

3jty \ 

b 
Bll C0S — + ^1^ COS   ) cos — + B^1 cos   coS — 

JtX 

X 

3JOC 

X 

«y 

b 

J^: =  ( 
E \ 

C,, sin 

) (21)) 

Jty 3jty \ JOC 3jtx 3jty 
+ C -, sin   )  sin —+ C-,,  sin  sin   

1:5 b   / X :il X y     ^ 

where all amplitude parameters are free; however,  it is found for rec- 

tangular plates that the number of free coefficients may be reduced 

without significant loss of accuracy by setting   A-o/A-,-,  = B,o/B,, = 

C-jo/C,,  = a   and   A,, = B^    = C-,-, = 0    .    Upon substitution of the 

expressions of Equations  (22),   (23), and {2h), the modified Reissner 

functional given by Equation (ih) is expanded to yield Equation {k2) of 

Appendix III.    Solutions obtained on the basis of the functional. Equa- 

tion  (h2), with   w    given by Equation (23) are designated Solutions B. 

INEIASTIC  PROBIEM.  UMMODIFIED REISSNER FUNCTIONAL 

For the determination of the inelastic postbuckling behavior and maximum 

strength of plates, the Reissner function given by Equation (10) is 

employed in conjunction with the stress distribution described by Equa- 

tions  (22)   and {2k) and the displacement functions of Equation (23). 

However, due to the Ramberg-Osgood generalized stress-strain curve 

parameter    n   being large for conventional metals in general,  the in- 

dicated integration in closed form of the effective stress terms in 

Equation  (10) is prohibitive.    Consequently, the integration is per- 

formed numerically. 
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For    K = 0    , Equation (10) reduces to the functional given by Equation 

(1*2).    Hence, the functional for the inelastic problem may be written as 

U" /U"\ 

EV \EV / 

1   1 
IK 
 f 

elastic 0 0 

where    (U"/EV) ,     . .      is given in Appendix III by Equation (^2). 

The required solutions are obtained by determining the values of the 

stress and displacement coefficients that render the formulated Reissner 

functionals stationary in value.    To achieve elastic Solutions Al, A2, 

and B and the Inelastic solution, the procedure requires the solutions 

of 8, 9> 13, and 13 simultaneous nonlinear algebraic equations re- 

spectively.    The method utilized in the solution of these equations is 

a basic Newton-Raphson Iteration procedure.    Appendix IV contains a de- 

tailed description of the method.    The modified steepest descents min- 

imization technique developed in Reference 1 and improved in Reference 2 

to obtain relative minima of the strain-energy functional is not as 

efficient for the present solutions, since the vanishing of the first 

variation of the Reissner or modlfied-Reissner functionals with respect 

to purely arbitrary stress and displacement states does not correspond 

to the achievement of relative minima. 

The application of the Newton-Raphson technique yields numerical values 

for the coefficients which can be utilized in conjunction with the axial 

stress distribution to construct load-shortening curves.    The load- 

shortening curves are plots of average axial stress versus unit shorten- 

ing, normalized with respect to the buckling stress and strain for a 

square (or infinitely long), simply supported plate, respectively.    The 

average stresses in the present analyses are obtained directly from an 

integration of    o'    over the plate width.    Numerical values of the stress 

and displacement coefficients, normalized with respect to the critical 

strain of a simply supported square (or infinitely long plate), are 

listed in Tables I through VIII for various values of unit shortening. 

10 



Two solutions, denoted by Solution Al and Solution A2, are effected for 

square plates employing the modified elastic functional and are compared 

in Figure 3 to the first-approximation elastic solution of Reference 2 

and the essentially "exact" solutions of References 3 and 5; corresponding 

normalized stress and displacement coefficients for specific values of 

unit shortening are li&ted in Tables I and II.    Solution Al, which 

utilizes only the   w       and   w^     terms in the w-^isplacement function, 

is accurate only for square plates.   Analyses results for rectangular 

plates with aspect ratios 1.25 , 1.33 , 1.5 , and 2.0 , obtained from 

utilization of the modified (Solutions A2) and unmodified (Solutions B) 

elastic functionals, are compared in Figures k througn 7 to the first- 

approximation elastic solutions of Reference 2 and the essentially "exact" 

solutions of Reference 3»    Tables II through V contain representative 

values of the normalized stress and displacement coefficients, at given 

unit shortenings, for these cases. 

A maximum strength analysis of an aluminum 202U-T3 rectangular plate 

with aspect ratio 5 > for which test data exist in Reference 3, is 

obtained through utilization of the unmodified inelastic functional. 

The two-element plate geometry analyzed is made effectively equivalent 

to the plate tested in Reference 3 by equating the expression for the 

critical stress of the two-element plate, derived in Reference 2 to be 

o     » 1+/3[E(rth/b) ]    , to the classical critical stress  expression 

o     » E(jrt/b) /3(l-^ )    for a solid plate.   The load-Bhortening curve 

obtained from this analysis is compared in Figure 8 to the test data 

of Reference 3 and the analysis results of Reference 2.    Tables VI 

through VIII contain numerical values for the elastic and Inelastic 

stress and displacement solution coefficients, at various values of 

unit shortening, corresponding to the buckle wavelengths considered. 

The determination of the values of unit-shortening ratios at which the 

buckle wavelengths change as the unit shortening Increases is described 

in detail in Reference 2 and is briefly restated herein for completeness. 

The calculation is made by construction of load-shortening curves cor- 

responding to each buckle half wavelength   X    or the number of buckles   m . 
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. 

For a given plate geometry, the load-shortening curves corresponding to 

m   and   mfl   buckles intersect.    At a particular value of shortening, 

the Reissner functional magnitude (area under the load-shortening curve) 

corresponding to    mfl   buckles will be equal to that corresponding to 

m   buckles.    Theoretically, this value of unit shortening is the point 

at which a "Jump" is first possible.    For additional shortening, the 

curve corresponding to   nn-l   buckles becomes temporarily the appropriate 

load-shortening path.    The procedure is followed with successively in- 

creased numbers of buckles considered to the point at which a maximum 

load is reached. 
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RESULTS AMD DISCUSSION 

EIAgTIC SOLUTIONS 

To e s t a b l i s h confidence in the method of ana lys i s enployed here in , ap-
p l i c a t i o n s of Re i s sne r ' s p r inc ip le and a modified vers ion of the p r i n -
c ip le have been made f o r comparison with e s s e n t i a l l y "exact" so lu t ions 
to the e l a s t i c postbuckling problem of un iax ia l ly compressed, simply 
supported p la tes possessing s t r a i g h t , unloaded edges. Excel lent agree-
ment of the present results wi th the e s s e n t i a l l y "exact" solut ions of 
S te in (Reference 3) and Levy (Reference 5 ) , shown in Figures 3 through 
7 , ind ica tes tha t the method of so lu t ion i s s u f f i c i e n t l y f l e x i b l e t o 
permit appreciable s imp l i f i ca t ions t o be made without s i g n i f i c a n t loss 
of accuracy. 

One s i m p l i f i c a t i o n , t h a t of coupling the bending s t r e s s e s to the curva-
t u r e s , introduced i n Reference 9 and employed here in t o perform Solu-
t ions A, i s seen t o be a des i rab le procedure f o r e l a s t i c p la te - type 
problems, in t h a t the number of f r e e s t r e s s parameters in the d i r e c t 
v a r i a t i o n a l so lu t ion i s considerably reduced. Another s i m p l i f i c a t i o n , 
t h a t of descr ib ing the u-displacement func t ion by a s ing le term and the 
s p e c i f i c a t i o n of v = 0 ( u t i l i z e d i n both Solutions A and B), which 
allows the in-plane equi l ibr ium equations t o be s a t i s f i e d iden t ica l ly , 
appears to be j u s t i f i e d by the exce l len t agreement obtained upon com-
parison with the e s s e n t i a l l y "exact" so lu t i ons . Obviously, i f the 
s t r e s s e s were required t o be found i n terms of the displacements through 
app l i ca t ion of the c o n s t i t u t i v e law ( p o t e n t i a l energy approach), t he i n -
f luence of the s impl i f i ed u- and v-displacement func t ions would have a 
profound e f f e c t , r e l a t i v e to the s a t i s f a c t i o n of in-plane equi l ibr ium. 
Hence, the f e a t u r e of s e l ec t ing the s t r e s s e s and displacements inde-
pendently and of s a t i s f y i n g Hboke's law only approximately, as pe r -
formed here in f o r Solut ions B with the a id of Re issner ' s v a r i a t i o n a l 
p r i n c i p l e , o f f e r s a very des i rab le approach relative t o tha t of po-
t e n t i a l energy, wherein very accurate displacement d i s t r i b u t i o n s are 
required to a t t a i n s a t i s f a c t o r y s t r e s s d i s t r i b u t i o n s through the con-
s t i t u t i v e law. 
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The reduced complexity of the problem, as a consequence of the invoked 

simplifications, is strikingly illustrated by the fact that Levy 

(Reference 5) requires at least four out-of-plane displacements and 

fourteen stress function terms to obtain the essentially "exact" 

solution shown in Figure 3 for the square plate at the maximum shorten- 

ing ratio considered.   At the shortening ratio corresponding to the 

calculation limit of Stein's solution (Reference 3), at least three 

out-of-plane displacement terms and either ten stress-function terms 

or ten in-plane-displacement terms are required to effect the "exact" 

solution by the Levy and Stein approaches, respectively. 

IMEIASTIC SOLUTION 

The maximum strength analysis of a uniformly shortened, simply supported 

rectangular plate based on Reissner's variational principle has been 

pcrfonned to Justify the procedure for adjusting, in a gross manner, 

the load-shortening curve to account for waveform changes beyond ini- 

tial buckling.    This procedure was utilized in the solutions of 

References 1 and 2 in conjunction with the potential energy method and 

with the assumed persistence during postbuckling of the waveform oc- 

curring at initial buckling.    The load-shortening curve obtained in the 

present analysis for the particular plate geometry reflected in the 

experimental work of Reference 3 agrees well with the results of 

Reference 2, as shown in Figure 8.    However, both the present results 

and the results of Reference 2 are slightly conservative with respect 

to the experimental data of Reference 3; the increased slope of the 

experimental curve at initial buckling indicates that the test data 

have been influenced to some degree by the test fixtures. 

To place the present maximum strength solution in more general perspec- 

tive,  it is plotted in Figure 9 along with a portion of the theoretical 

and experimental plate maximum strength data compiled in Figure 5 of 

Reference 2.    The reference numbers in Figure 9 are those of the 

present report.    It can be seen that the maximum strength analyses of 

both References 2 and 3 correlate more closely with the test data of 

Reference 11 than with the test point taken from Reference 3.    However, 



as mentioned previously, the test data of Reference 3 reflect an appar- 

ent  increase in plate strength due to test fixture effects; however, 

since the actual cause of the increased slope of the load-shortening 

curve at initial buckling (see Figure 6)  could not be isolated, no 

attempt has been made to adjust the experimentp.1 postbuckling and maxi- 

mum strength results.    The comparison of the present results and those 

of Reference 2 with the maximum strength criterion based upon the 

von Kanaan effective-width concept (Reference 10) suggests that when 

the buckling stress for a simply supported plate is greater than 

0.3 a        , the curve faired through the three points given by the 

calculated point of the present analysis and the calculated points of 

Reference 2 at    (o    ) ,/o      - 0.3    and   0.6    ,  respectively, should be cr cl'   cy 
utilized for maximum strength prediction of rectangular plates 

(L/b > 5)    .   Application of the present anftlysis techniiue to improve 

the results of Reference 2 at    (o    ) ,/a     = 0.3   and    0.6    , respec- v cr'cl'   cy 
tively, would show little effect, since the higher initial buckling 

stresses reduce the postbuckling range considerably prior to the 

occurrence of a maximum load.    In fact, a glance at Figure 5 of 

Reference 2 shows that the maximum strengths of simply supported plates 

with various types of unloaded-edge conditions after buckling reflect 

little difference as    (a    ) -i/0       approaches about    0.6    . 

The complexity of extending the potential energy (Rayleigh-Ritz) 

solution of Reference 2 (without the load-shortening curve adjustment 

procedure) to obtain results equivalent to those of the present 

analysis is prohibitive, due to the number of displacement terms re- 

quired to obtain an accurate in-plane stress distribution through the 

constitutive law.    The procedure employed in References 1 and 2 re- 

quires the existence of an "exact" elastic solution upon which to base 

the adjustment procedure; on the other hand, efficient use of the 

present theory requires,  in the absence of stress distribution infor- 

mation determined on the basis of limited experimental data, no more 

than approximate elastic solutions from which forms of the assumed 

stress distributions  can be obtained. 
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Another advantage of the present method of analysis relative to the 

potential energy approach of References 1 and 2 Is that In the fomer, 

the stress distribution can be evaluated throughout the plate after the 

stationary value of the Reissner functional has been determined, whereas 

in the latter, the stress distribution is known only for the solution 

based upon the initial buckling waveform. The stress distributions 

corresponding to the adjusted load-shortening curves remain, of course, 

unknown. 

Due to the utilization of a deformation theory of plasticity, occurrence 

of unloading in particular regions of the plate as the shortening and 

number of buckles both Increase must be considered. It is found in the 

present analysis that local unloading of snail magnitude (no greater 

than 5$) does occur in Inelastic regions of the plate when the buckle 

wavelength is assumed to change abruptly; however, due to the known 

inaccuracy of the uniaxlal stress-strain curve representation for a 

material and taking cognizance of the fact that the total load carried 

by the plate is an integrated phenomenon, the small, local unloading 

that does occur In the inelastic portion of the plate is Ignored in the 

present problem. Thus, it may be considered that the present problem 

has been undertaken under the assumption that the material is simply 

of a nonlinear elastic nature. 

The simplifying assumption in the present solution that the v-displacement 

is zero throughout the plate should be assessed. Based on the correlation 

of the results for the elastic solutions carried out herein and in Ref- 

erences 3 and 5, the Influence of the violation of the condition that 

the unloaded edges be free to translate is considered to be minor. The 

actual correlation is shown in Figures 3 through 7. 
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CONCLUDING REMARKS 

The basic factors required to accurately predict the inelastic post-

buckling behavior and the maximum strength of simply supported rec-

tangular plates with straight, unloaded edges have been shown to be 

(l) buckle wavelength changes, (2) changes in waveform beyond Initial 

buckling, and (3) the onset of plasticity. The impact of item (l) can 

be seen in the inelastic postbuckling analysis of simply supported 
square plates presented in Reference 1. While the buckle aspect ratio 

remains unity, no clearly defined plate maximum strength is obtained 

for the quite reasonable range of plate end shortening considered. 

However, the consideration of all three factors collectively for the 
first time in the rectangular plate investigation of Reference 2 re-

sults in an analytical solution for the prediction of the maximum 

strength of a simply supported plate, which correlates excellently 

with experimental data presented in Reference 3« The experiment re-

flects loading and boundary conditions very close to those assumed in 
analyses of References 1 and 2. With regard to item (2), the analyses 

of References 1 and 2 utilize a load-shortening curve adjustment pro-

cedure that only grossly accounts for the waveform changes beyond in-
itial buckling as they effect the load-shortening curve. The present 

analysis, based upon Reissner's variational principle, establishes the 

validity of the adjustment procedure and, in addition, illustrates 
another attractive method for obtaining engineering solutions to plate 

maximum strength problems. As concerns item (3), the ability of the 
secant modulus deformation theory of plasticity to adequately represent 

inelastic behavior is demonstrated. Local unloading of small magnitudes 

occurs in certain inelastic portions of the plates analyzed; however, 

the influence of small unloading on the postbuckling and maximum plate 

strengths (which are integrated phenomena) is not significant. 

Efficient use of the potential energy method of solution with the 
adjustment procedure incorporated requires that essentially "exact' 

elastic solutions be available to provide the necessary basis for 
carrying out the adjustment procedure. However, should neither "exact' 
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elastic solutions exist nor limited experimental data be available to 

suggest the form of the stress distributions, then only approximate 

elastic solutions are required to obtain the general form of the dis- 

tributions to be used in conjunction with Reissner's variational 

principle. 

The fact that Reissner's principle has had little application to date 

may be attributed to the apparent complexity involved in the require- 

ment to assume ths states of stress and displacement independently. 

However, the present analyses indicate that the principle has suf- 

ficient flexibility to permit major simplifications to be made with 

little loss in accuracy.    In particular, the features of (l) employing 

only the first appraximation of the in-plane displacements and (2) 

coupling of the bending stresses to the curvatures through the con- 

stitutive law in the elastic case (the modified Relssner principle 

Introduced in Reference 9) are found to be extremely useful in re- 

ducing the number of free amplitude parameters appearing in the assumed 

stress and displacement functions.    Item (1), although resulting in a 

violation of the unloaded-edges boundary condition and permitting only 

approximate satisfaction of the constitutive law, is seen to have only 

minor Influence on the accuracy of the elastic solutions.    The infer- 

ence of Item (2) is also found effective for the present Inelastic 

solution, where the bending stresses are assumed in the form of the 

curvatures as Indicated by the constitutive law but with completely 

free amplitude coefficients whose magnitudes are determined from the 

variational process. 

The unconservative nature of the von Karmin effective-width formula, 

when applied to simply supported plates possessing a buckling stress 

greater than    0.3 (o    )    , suggests that the combined results of the cy 
present inelastic analysis and the inelastic analyses of Reference 2 

be utilized for design purposes.    Hcwever, additional tests, utilizing 

the technique described in Reference 3, are required for the range 

0.3 < (0er^cl/acv < 0'^    *    FQr simP1y supported plates with buckling 
stresses less than   0.3 (o    )    , the von K&inin effective-width formula cy 



provides conservative design data for plates In which the edges do not 

move out of the original plane In the postbuckllng range.   Where other 

plate loading and boundary conditions are of Interest, the techniques 

of either Reference 2 or the present inelastic analysis provide an 

efficient means for obtaining maximum strength behavior.    The com- 

bination of the results of such analyses with a minimum of Judicious 

testing (for correlation purposes) could provide a useful tool for 

removing some of the conservatism from present design analysis 

techniques. 

2P 



Figure 1.    Plate Geometry and Coordinate System. 
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Figure 2. Stress-Strain Curve for Aluminum 202k-13 Assumed in Present 
Inelastic Analyses. 
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EUIER EQUATIOMS AM) BOUNDARY CONDITIQNS DERIVED FROM THE VANISHING 
CF THE FXROT VARI/VTICW CF THE REISSHER FUNCTIONAL FOR 

A TWO-EI£MEI7r PIATE WITH PRESCRIBED END SHORTENING 

The Reissner functional for present considerations is defined as 

U//=/|ae+ae+T7     -F'ldV J    1  x x        y y       xy'xy | (26) 

The strain-displacement relations for small-strain, moderate rotations 

plate theory, when modified for the two-element plate of Figure 1, be- 

come 

e =   e' ± €"   =    u     + iv2   ± |w 
TC.   v XX ,X       2     -X      2    ,xx t,t3 * f r 

H^ 7        y *y      2    ,y      2    ,yy 
)   (27) 

fxy =    7. 
t,b 

± y" =.    a     +v     +ww     ±hw 
xy      'xy ,y        ,x       ,x ,y xy 

where the   +   and    -   signs correspond to the top and bottom elements 

of the plate, respectively. 

The stresses may be written 

\,b 

yt,b 

xy. t,b 

a' ± a" x       x 

a' ± o" 
y     y 

T'    ± T" 
xy       xy 

)   (28) 

where the primed and double-primed quantities denote in-plane and 

bending contributions, respectively. 
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Substitution of Equations (2?) and (28) into Equation (26) yields 

U"   =   t. 

L/2      b/2 

-L/2    ^b/2 

a     + 
k
Xt g(v*H*Hv\)|w' 

+   fa     +a     l(v     +Ä-W     |+|a I yt     ybn ,y    2   ,yl   \ y - 0    Uw 
t       yb/2    '^ 

(T +T |fu        +V       +WW        I 
xyt     ^t/\ ^y      'X      'X 'y/ 

+        T. 
xyt    xyb 

)^,xy-(Ft + Pb 
dxdy (29) 

The average stresses and resulting bending moments are 

a      ■ x 

a     = 
y 

xy 

S + \. 

a     +0 
, yt       yb/ 

.Txyt + ^b) 

\ 
- t ^ s- [ a^    - a f 2 I   x^       ^ 

M     ■   - t- sf   0     -a 
y        f 2 \ yt    yb 

" ^x 

^y 

)       (30) 

(Continued) 
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\y   - 
=     t.  ^     T ft -   T ]    =     tjlj" 

Substitution of Equation (30)  into Equation (20) and with    (F' + F') 

replaced by    2F'    gives 

U"   =    t. 

L/2     b/2 

-L/2    -b/2 

2a ' f u     +iw2|+2a/fv     +Jw2) 
c ^ ,x    2   ,xj       yy  ,y    %   ,y j 

+    2T'     (U     +V     +ww 
M 

w 

My % 
^yy t.    'xy 

- 2F' dxdy 
(31) 

In the elastic case, 

2*"   =   # 

or 

2 2 2 2 2 2 
a     +a     -aa     +3T       +a     +a     - a    a     +3T Xt        yt       xtyt xyt        ^       yb        xbyb xyb ] 

F'    =   —   a': 

2E   LX 
+a      -aa+3T     + 

y    xy    xy  (tfh) 
 -• (1^ + Wp  - M M   + 3^   ) 
hx2 v x       y        x y xy'J 

reff whereaB in the inelastic case,    F' ■ / € ffda f      .    The vanishing 

of the first variation with respect to a'.a'.i'    ,M   ,M    .M ■^ x'y'xy'x'y'^cy 
u , v , and w is then written as 

L/2  b/2 

ÖU' 26a ' (u  + i w  i + 2a' [Su  + w Sw c ^ ,x  2 ,xj   x ^ ,x   ,x ^x 

+ 26a 

-L/2 -b/2 

' f v  + i w  ) + 2a ' ( &v  + w  5w  | r\,y    z   ,y I      y ^ >y ,y    ,y j 

h9 
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+    25T'    (U     + v     + w   w    ) + 2T'    (&U     + &v 

5M M 

,x ,y        ,x    ,7' ,xx ,xx 
tf tf 

8M M 5^ M 
-JL w        - -* 8w       +2 —^- v       + 2 -^- 6w 

.       ,yy    +      ,yy +      »xy ;Xy 

ap'        ap'       ^,' 2p'       SP' 
- 5a' +  5a' +   6T'   +   6M   +   6M 
'   x   ^'   y   ^'    xy   ^M    

x   ^M    y öa'     A     öo'     ^      ÖT x y xy X y ^       "■      ÖM., 

ap' 
+      5M 

ÖM Xy 

xy 

dxdy   =   0 (32) 

With the grouping of like terms and after Integration hy parts. Equa- 

tion (32) becomes 

L/2      b/2 

6U"    =    2t, 

-L/2    -b/2 

(            1    2        «M u     + - w .. -     5a' 
,x 2    'A      öa' x 

/             1    2        ^              /                                          ör   \      , V      + — w       -   18a     + 1 u      +v      +WW 9T 
I ,y   2  ,y   öa'/  y    \ ^y     ^    »x »y   ax- /   ^ v y x xy' 

,xx 
OF' \ / w aF' \ /w ..._     cF' 

5H   -I -^ +   1^   + i -*-*- - 

"f      ^y 

dF   \ / w dF    \ /v v„ 

— )8*L-Ha+ — KM-^ ÖM. /     X    \ 2t,        ÖM    /    y     \  t. l2tf        ^ /     "'     V2t 

;5^ 

-    (o'     + T'      ) 6u - (a'     + T'   V) 6V v x,x       xy^' v y,y       xy^x7 

-   Ka'w    )      +  (a'w    )     + (T'W    )      + (T'W    ) 
^ x ,x;,x + Ky ,y',y     v xy ^^x      v xy ,x;,y 
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1 
—    (M 
2t, -x,xx + \yy - *% 

- 

5w     Idxdy 

b/2 

+ Zt. 

-t/2 

L/2 

+ 2t. 

.L/2 

ax'6u 
x = 

x = 

+ L/2 

-L/2 

a'bv 
y 

y = 

y » 

+ b/2 

-b/2 

L/2 

dy+2t. 

■L/2 

y = + b/2 
T' 5U 
xy        y - - b/2 

b/2 

dx + 2t. 

-b/2 

T'  6v 
xy 

x = L/2 

X = - L/2 

dx 

dy 

b/2 

_b/2 ^Vx-^x+v^,y+\x - Vy]ew i x
x;' L

L^ )^ 

L/2 

-L72 
[2V^y

+?VxW + M
y,y-V,x]&vl 

y = + b/2 

y = - b/2 
dx 

b/2 

-b/2 

x = + L/2 

X    'X      x = - L/2 

L/2 

dy - 

.L/2 

M 5w 
y   >y 

y = + b/2 

y = - b/2 
dx 

L/2 

-L/2 
VW^ 

y = + b/2 

y = - b/2 

b/2 

dx + 

.b/2 

x = + L/2 
M    Sw 

Xy    'y     X--L/2 
dy 

(33) 

For Equation (33) to vanish for arbitrary states of stress and dis- 

placement consistent with the prescribed displacement boundary con- 

ditions, then each of the terms must vanish identically. The Euler 
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equations and boundary conditions that result are obtained as follows: 

otress-displacement relations: 

=      6        =      U       +   — W 

^X 

&•' 
    =   e     =   v     + — w 
öc'       y        ,y   2   ,y 

y 

——   =7/    =    u     +v     +ww 
iT' xy       *y      >x      ,x ,y 

xy 

►       (3Jia) 

Moment-curvature relations: 

ÖM 

ap' 

öM 

2tf    '^ 

—— w 
2t. »yy 

ar' 
— w 

xy 

>     (3to) 

In-plane equilibrium equations: 

a'     + T' =    0 x,x        xy,y (35a) 

a'     + T' =    0 
y,y      xy,x (35b) 
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Out-of-plane equilibrium equation: 

2t- taV       + 2T' w       + a'w      ] + M - 2M + M f      x ,xx xy ,xy       y ,yy x,xx xy,xy        y,yy 
(36) 

Stress  (natural) boundary conditions: 

/ /      + h/o) - n corresponding to arbitrary u-displacement 
xy    '        f  i along edges    y = ± b/2 

Tx'y(± L/2,y) = 0 corresponding to arbitrary v-displacement 
along edges    x = ± L/2 

corresponding to arbitrary rotations   w \^^-°   IZZT^*:ri% 

M^x,  ± b/2) = 0 

L/2 

.L/2 

a^x,  ± b/2) dx = 0 

corresponding to arbitrary rotations   w 
along edges    y = ± b/2 '^ 

corresponding to constant v-displacement 
along edges    y = ± b/2 

(37) 

The Euler equations and boundary conditions established from the vari- 

ational Equation (33) are the same as those obtained in Reference 1 from 

potential energy considerations, except for the addition of the stress- 

displacement and moment-curvature relations given in Equations (3^). 

Naturally, when the constitutive law for the secant-modulus deformation 

theory of plasticity (see Reference l) 

o     ■   «I x 3   B 

[vK] 
xy 3  7xy 

(38) 
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is  iritroducod into the Reissner functional [Equation (26)] prior to 

carrying out the variation,  the functional can be reduced to the po- 

tential energy function of Reference 1.    The results obtained from the 

variation are then identical to those presented in Reference 1. 
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APPENDIX II 

MODIFIED KEIGSMER FUNCTIONAL FOR EIASTIC PROBLEM 

The modified Reissner functional given by Equation (18), after substi- 

tution for the assumed stresses [Equation (22 )] and displacements 

[Equation (23)] and subsequent integration over the plate area, becomes 

U" 

EV 

A       A 
A. + -^+ ^ 
. 1        3        5J 

+ k     < A. 

/ _2       _e      _p \ 
[w11+9w31 + w13) 

+ Ar 

(-2 -P  \ 
Ki+ ^i)   3 -2 

  W13 
22 W11W13 + ^k    " 

+ A, (7ll+^l) 
+ k35Wllvl3 + k36 

w6 

13 

+ c ^1 kMk5 -f+ k6^1 " Viiv3l J+ ^13k37 

W13 -   - 
+ ~ k38 " wiiw3lk45 

+ k 8 1 
B. 

+ B, 
j^-, + 9v^ + 2^n L73l) k   ^ 11 -  ""13 ^ ^"ll"3i/     u   -   - VQI 

'9 2      klOVüV3l + kll f 

+ C 

k^ /-e     ^i    3_ _ 

;rhi + vVnw3i)+k3/i3 
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where 

+ \o ^11W13 + I wl3w3l 

Ck 
13 hk   vii + "7 " ^ WllW3l   + ^3 + ^2V11W13 \ 9      2 / 

+ ^3 wl3w31 

1 

2 

A"      A*- 2 

4+";+ -;+ c2 (ki5+ ^0+ ^ - k2T) * ;AiA2 

2       2 
+ - A1A3 + - A^ - C (kl6A2 + ^3 + k22B2 + k23B3) 

+ kl8B2 + ki9B3 + ^l^ 

+ ^l + k26^l + HÄ (39) 

11 

31 
(^0) 

The coefficients    k,    through    krr   are nvunerical constants resulting 

from the integration process.    The constants, some of which depend upon 

56 
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either or both of the parameters    b/X   and   nh/b    , are 

^   =   2.V6739 [ß2/(jth/b)2] k17   =    0.01975 

kg   =   0.13069 kl8   =   0.08889 

k3    =    0.0^110 k       =    0.07111 

'  k^    =    0.06219 k20   =    0.0005^ ß 

k5   = 0.35653 

k6   " 1.0568^ 

^   a 0.39268 

k8   - 2.^6739 [l/(Äh/b)2] 

k9   " 
-O.15890 

klo   " O.08592 

kll   - -0.0^199 

k21 = 0.15238 

kgg = 0.00931 ß2 

k^ = 0.00798 ß2 

^ = 0.00117 ß2 

kg. = 0.^1123 ß4 + 2ß2 + 1 

kgg = 0^1123 (8lß^ + l8ß2 + 1) 

k^ = 0.00035 ß2 

k^ = 0.09019 ß k^ = 0.31082 

kl3 = 0.31831 [ß2/(jth/b)2] k35 = -O.07298 

k^ = 0.05939 k36 = 0.15801 

k15 = 0.00276 k3 = -0.0108 

kl6 = 0.17780 k38 = O.OI692 

(Continued) 
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it39   =   ü.05069 ßc k1|3   =   0.19^90 

\0   =    -0.00526 ßc 
k^   =    0.^1123 (ß   + 18 ß   + 81) 

kUl    =    0.01+533 k1+5    =    -0.01192 

^2 -0.05797 (in) 

The requirement of the vanishing of the first variation of the functional, 

given by Equation (39) with respect to the arbitrary parameters, leads to 

a set of nonlinear algebraic equations, the solution of which establishes 

the values of the stress coefficients   A,   , A0 , A, , B^ * B-, , and    C 3 1  2 
and the displacement coefficients    w ..   , w.,..   , and   w ,, 

obtained with   w 

3 ' 
The results 

13 
0   are designated Solutions Al, whereas the results 

obtained with   w..-    retained are designated Solutions A2. 
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APPENDIX III 

UNMODIFIED REISSHER FUNCTIOHAL FOR EIASTIC PROBLEM 

The unmodified Reissner functional for elastic problems given by 

Equation (1^), after substitution for the assumed stresses [Equations 

(22) and (24)] and displacements [Equation (23)] and subsequent in- 

tegration over the plate area, becomes 

U" 

EV 1      3      5 
+ k. 

-2       -e     -2 
wil + 9w3l* W13 

+ A, 
(^l+^l)        3    -   - ^ 

.re 
13 

^     A      " rj wiiwi3+ T 
k^ 

+ A, 

2jt 

k3 ' 1 ^ + Vll^l3 +   g   k36 
(*U + ^l) 

+ c k4 -f+ k^i ■ Vii73i+ V1A3 

wl3 -  _ 
+ k3Ö ~ " k45vl3w3l 

+ k, 8 
B„ w6       3 -2 31 -   — 

v,. + 9w,o + -,ii+ -w, ,w. 11 13 '    9   ' 2 "11"31 

+ B- (^+9^3+2^3l) + k^v^w ♦ kll 

-2 
v3l 
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— ■  ■. 

+ c ^[^ll + V-f+l 7lÄl)+ k39^3 + Ho (6 ^13 

+ -wl3w3l 

Ck 13 
k^ (^i+ 7 + - wiiSi)+ HÄ + VuTis 

+ ^3wl3w31 - Q ^11 ("U +a \3) " Q Bll (7U + 9 a ^ ,13; 

+ -cllß ^ll+3a7l3) 

i 

2 

.2       .2 

l^*^^'^*^*^-^ 
5       9 

/i + a2 \ 
     (A 

\   ^      / 
n + Bn - AuBii + 3c?i) 

+ B^l8 + B^19 + 1 A^ * - A1A3 ♦ - A2A3 

" C  (A2kl6 + A3k17 + B^ ♦ 33^3) ♦ B2B3k21 (la?) 

where   wL.   , w-j , and   w^   are given by Equations (UO) and the    Ic    co- 

efficients, by Equation (hi). 
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The results obtained from the simultaneous vanishing of the first vari- 

ation of the functional given in Eqmtion {k2) irith respect to the 

stress coefficients   A1 , Ag , A- , B^ , B., , C , A^ , B.,   , C-,  , ani 

a   and the displacement coefficients    w ..  , w-,   , and   w „    are 

designated Solutions B. 
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APPENDIX IV 

MEWTON-RAPHSON ITERATIVE TECHKIQIJE 

The requirement that the Reissner functlonals given in Equations (39), 

(^2), and (25) have a stationary value results in sets of simultaneous 

nonlinear algehraic equations, the solution of which establishes the 

values of the stress and displacement coefficients.   The basic Mewton- 

Raphson technique is employed to effect the solution.   The method is 

illustrated by the following example.    Consider a function   F(x1,x2, 

.... x^)   for which the values of   x     are sought that render   F 

stationary.    This requires that 

^(x^ 

&, 
=    ♦i^i) 1,2,...m (number of independent 

variables) 

If approximate values of   x     are known, the above relations may not be 

satisfied.    Therefore, by applying a suitable correction Ax.    such ttot 

^(Xj^ +Axi) » 0    , the desired values of   x.    are obtained.    To deter- 

mine the correction Ax 
1 

the functions ^(x., -»-Ax^) are expanded 

into a Taylor series about Xj with only the linear terms retained. 

This procedure results in the following system of linear algebraic 

equations 

m 

0 AXj 

J-l ^J 

(^3) 

where   i = 1,2,3.••m    .   Written in matrix form, the equations are 

Pi 

A 
^I^JJ 

* i Axi "' *J 
(WO 

where    i = l,2...m   and    J = 1,2...m Thus, by adding the correction 

Ax.   to the starting value   x.   and by repeating the process until 

*/äxi the solution is obtained. 
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For the inelastic problem formulated in Equation (25), the partial 

derivatives indicated previously are obtained numerically, whereas, 

in the elastic solutions, the derivatives are evaluated explicitly. 

The partial derivative approximations utilized are 

3F F(xi + Bx^ - F(x.  - bx^ 

bi± 26X. 

ÖT" F^ + &x.) - SFix^ + F(x1 - bx^ 

A F(x1 + 6X.   , x. + 5x. ) - F(x. + 6xi) - F(x   + 6x.) + F(x.,x ) 

to) 

where   i = 1,2...m   and   J = l,2...m    . 

The step sizes    5x.    used in evaluating these derivatives are taken as 
-3 x.  x 10        .   The area integration indicated in Equation (25) is per- 

formed numerically utilizing a basic trapezoidal technique carried out 

on a 5 x 5 plate grid. 
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The poPtbucklinR and maximum strength analyses of uniformly shortened, simply sup-
ported rectangular plates with straight, unloaded edges are performed by using 
Reissner's variational principle in conjunction with a deformation theory of 
plasticity. The results are compared to (1) experimental data for a rectangular 
plate in which the test conditions basically reflect the boundary conditions speci-
fied in the present analyses, and (2) a potential energy solution that correlates 
well with experiment, but in which the effect of waveform change on the average 
stress carried by the plate is accounted for only in a gross manner and in which the 
effect of small, local unloading is neglected. Good agreement with experiment es-
tablishes confidence in the new approach and indicates that the simplified technique 
utilised in the potential energy solution to compensate for waveform changes may be 
employed for engineering purposes. Both analytical approaches predict a slightly 
conservative plate maximum strength relative to the experimental result. This dis-
crepancy is attributed to slight departures of the test conditions from the ideal 
boundary and loading conditions assumed in the analyses. 

An application of Reissner's principle and a modified version of the principle is— 
undertaken initially to obtain the elastic postbuckling behavior of mriftv^ny 
compressed square and rectangular plates. Excellent agreement of elastic-solution 
results with essentially "exact" solutions of other authors for the same boundary 
conditions establishes the effectiveness of the Reissner and modified Reissner prin-
ciples and justifies the application of the Reissner-principle approach to the maxi-gt.rcng+K r re-
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